GE Power & Water Water & Process Technologies

Soluções GE Água do Mar

Marcus Simionato

Skids de Osmose Reversa

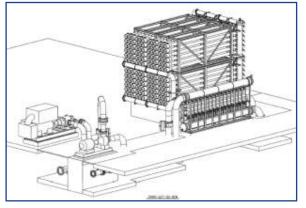
E2 - Series E4 - Series E4H - Series E8 - Series PRO - Series SWRO - Series

General Pre-Engineered Systems

Customers Trust GE Water

Over **100** SWRO systems installed in the past 10 years around the world.

3 basic design optic



Containerized solutions SeaTECH

Skid mounted solutions SeaPRO & SeaPRO-E

On-site assembled solutions SeaSMART

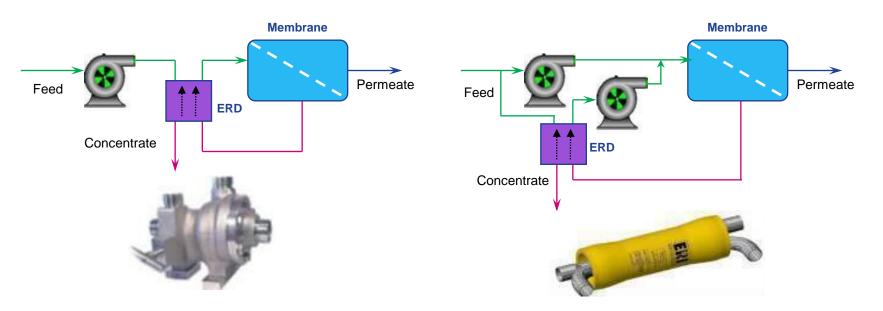
3

GE's SeaPRO Features and Accessories: •One source

- Never more than 8 elements in series on any design
- Integral Energy Recovery System

- Pre-Engineered
 Factory tested for fast commissioning
- One source accountability with GE SWRO Elements
- All use 40" RO.Save 5micron
- ✓ nominal
- cartridge filters

- Welded skid & frame – painted for corrosion resistance
- Reliable corrosion resistant high pressure piping
- RO Controls capable of running a system or a stand alone RO skid w/ 4-20 mA critical instruments for off-line trending


- High Quality & Efficient High Pressure Pump
- VFD controlled permeate flow rate

SeaPRO Product Range

Model	Capacity	# Membranes	Flexible configuration
SeaPRO-8	20gpm (100 m ³ /day)	8	Feed water salinity:
SeaPRO-16	40 gpm (200 m ³ /day)	16	35,000 or 45,000 mg/L
SeaPRO-28	60gpm (300 m ³ /day)	28	Recoveries designs:
SeaPRO-42	100gpm (500 m³/day)	42	45% or 35% recovery
SeaPRO-63	150gpm (750 m ³ /day)	63	Electrical Control
SeaPRO-84	200gpm (1,000 m³/day)	84	Packages: Basic or Premium
SeaPRO- 126	300gpm (1,500 m³/day)	126	Power supply: 50 Hz or 60 Hz
SeaPRO- 210	500gpm (2,50 m ³ /day)		SU HZ OF OU HZ

Energy Recovery Device - Options

Fedco Turbine

ERI PX Rotor

- Custo de produção ~US\$ 1.00 /m3
- Consumo de energia: 3,5 a 5,0kwh/m3 (ERD+LE membranes)

Introducing: SeaTECH

Containerized Desalination Plants

Model	Capacity	# Membranes	Pre/Post Treatment
SeaTECH-12	30gpm (163 m³/day)	12	Included in 1 module
SeaTECH-35	83 gpm (454 m³/day)	35	Included in 1 module
SeaTECH-84	200gpm (1,000 m ³ /day)	84	Separate modules
SeaTECH- 252	550gpm (3,000 m ³ /day)	252	Separate modules

GE Water & Process Technologies

Fact Sheet

SeaTECH Series

SeaTECH-12: 163m3/day (30gpm) integrated SWRO Container

This specification defines the integrated design requirements for the SeaTECH line of containerized systems for the Industrial, Power and Municipal markets. All necessary equipment required for independent operation is provided given the necessary pretreatment precautions are taken. Design basis revolves around containerized system with high-pressure axial piston feed pump as well as a containerized media filter and cartridge filter system. Optional configuration available based on market needs.

Functional Description

Standard Components

SeaTECH Series

SeaTECH-84: 1000m3/day (200gpm) SWRO Container

This specification defines the integrated design requirements for the SeaTECH line of containerized systems for the Industrial, Power and Municipal markets. All necessary equipment required for independent operation is provided given the necessary pretreatment precautions are taken. Design basis includes containerized system with centrifugal feed pump as well as a containerized media filter and cartridge filter system (SeaTECH-MMF-84x3VI. Optional configurations available based on market needs.

Functional Description

Single pass, single stage, twelve pressure vessels

VFD for Booster Pump & RO Feed Pump

- Valves: Permeate diversion valves, diaphragm valve for ERI reject out, isolation butterfly valves

SWRO & Fump Operating Parameters coupled with pump and energy recovery system12 containent SedTEOH252 5Dm Cartridge filter, chemical feed system and CP Temperature ______10 to 55% (77 to 55%) Recovery 45 to 35% · Media filtratiun system: SeoTECH-HMF-80x2H Nominal Rejection: -1000 MauMos Supply Pressure ______2-4 bor Optional configurations available based on

Note: Low temperatures, recoveries, and tigh satisfies will reduce system productivity

WRO & Pump Functional Des

GE Water & Process Technologies

SeaTECH Series

Litilities containers SeoTECH-UTL-252

System

market needs.

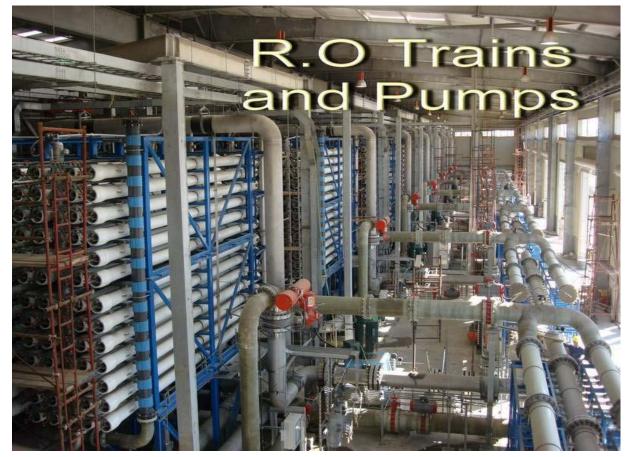
GE Water & Process Technologies

Fact Sheet

SeaTECH Installation:

Fuertaventura, Spain Canary Islands

Installed: January 2008



GE Water & Process Technologies

8

© 2010, General Electric Company

Hamma Seawater Desalination 200.000m³/dia - Algiers, Algeria

imagination at work

On-site assembled solution SeaSMART Seawater RO Pretreatment

SWRO Plant: Type of intake Feed water is collected from either

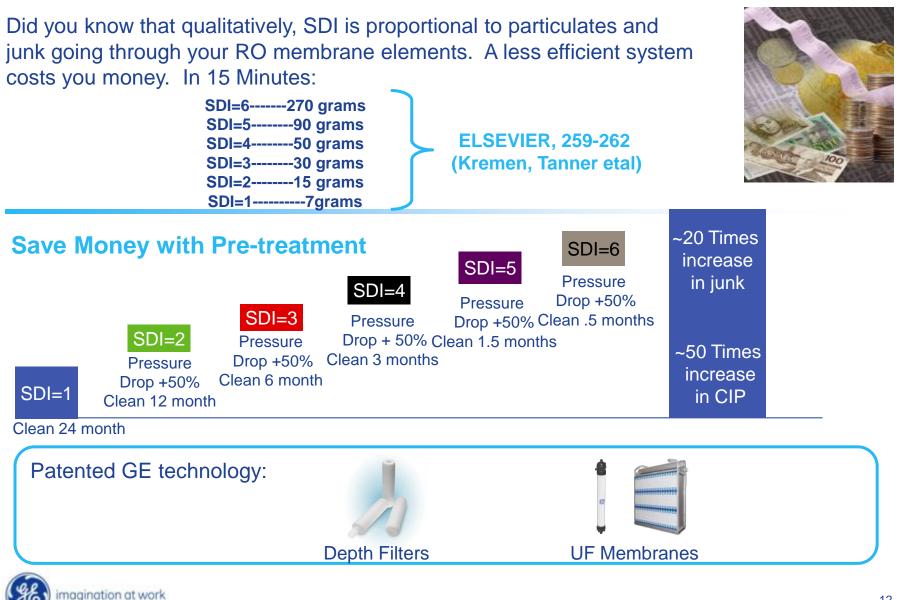
a) open sea intake (ideally 6 m submerged)

closer to surface = higher risk

near ship traffic = higher risk

b) beach well

They have the advantage of delivering "pre-filtered" water that may greatly reduce additional pretreatment requirements.


closer to ocean = greater solids

farther from ocean = fresh water dilution

From the intake, feed pump transfers sea water to the pretreatment system.

11

Pre-treatment Matters!

© 2010, General Electric Company

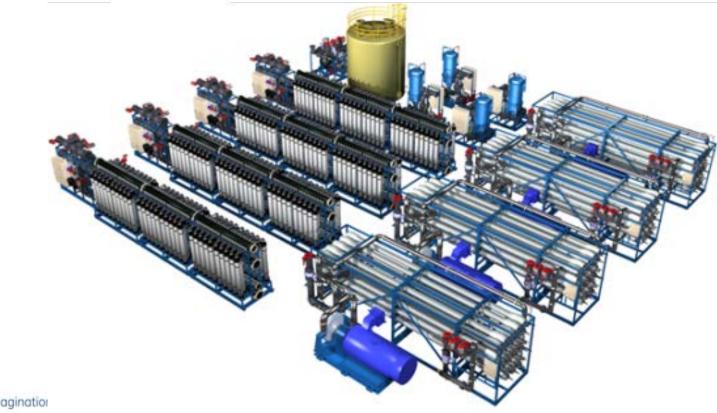
Pretreatment Platforms Two Choices:

Multimedia Filtration:

Lowest Equipment Capital Cost Well known Good water quality produced Narrow TSS range Standard membrane life Larger footprint

Ultrafiltration:

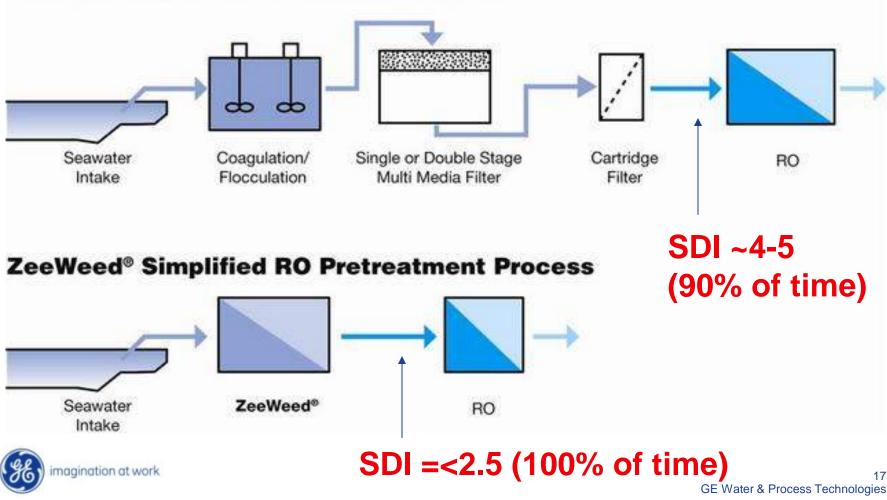
New technology Best water quality produced Broad TSS range Longer RO membrane life Smaller footprint


Seawater Media Filtration Products

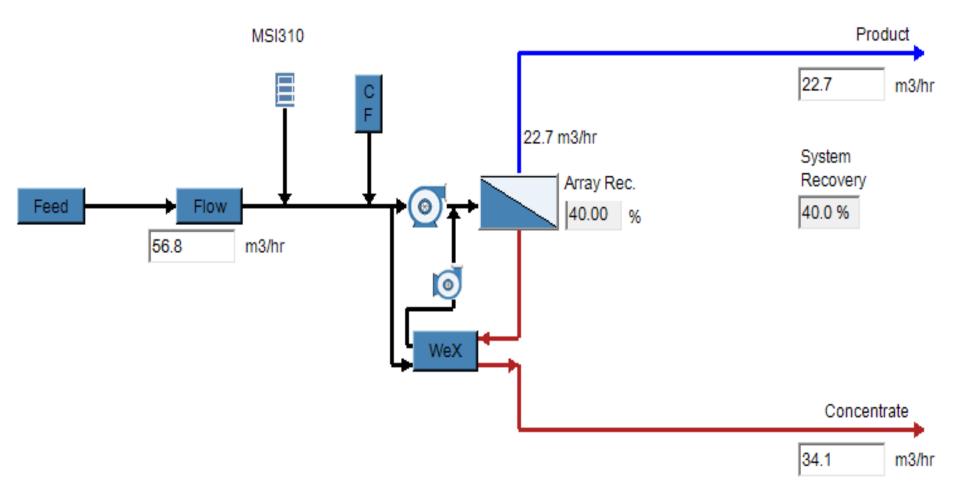
Model	Capacity	Capability
SeaTECH-MMF- 84x3V	500gpm 2,700 m ³ /day	1 x MMF for Beach Well (<3ppm TSS) 3 x MMF for Open In- Take (<20ppm TSS)
SeaTECH-MMF- 80x2H	1,100gpm 6,200 m ³ /day	Max feed turbidity TSS: 10ppm
SWRO MMF63	100gpm 550 m ³ /day	Max feed turbidity TSS: 10ppm
SWRO MMF96	250gpm 1,360 m ³ /day	Max feed turbidity TSS: 10ppm

SeaPAK Series Integrated UF SWRO Platform:

- SeaPAK-1000: 1000 m3/day of permeate
- SeaPAK-2500: 2500 m3/day of permeate


Comparação Técnica UF vs. FMM

Pré-tratamento	UF ZeeWeed®	Convencional		
Descrição	 Fibra oca imersa 	 Filtro multimedia (FMM) 		
	 tamanho nominal do poro 0.02 μm 	 Filtro cartucho de 5 μm 		
Qualidade da	 Qualidade consistente e confiável 	Qualidade flutua		
água tratada	 SDI < 2.5, 100% do tempo, 	 SDI < 4 ~90% do tempo 		
	tipicamente < 1.5			
	• Turbidez: < 0.1 NTU	• Turbidez: < 1.0 NTU		
	 Barreira absoluta para partículas e microrganismos 	 FMM não é uma barreira absoluta para partículas e microrganismos 		
	 Bacteria: > 5 log remoção 	• Qualidade da água flutua em		
	 GiardiaCyst: > 4 log remoção 	relação a retenção das partículas		
	 Virus: > 4 log remoção 	e qualidade da água bruta.		


Conventional SWRO Process Vs. GE's Optimized SWRO Process

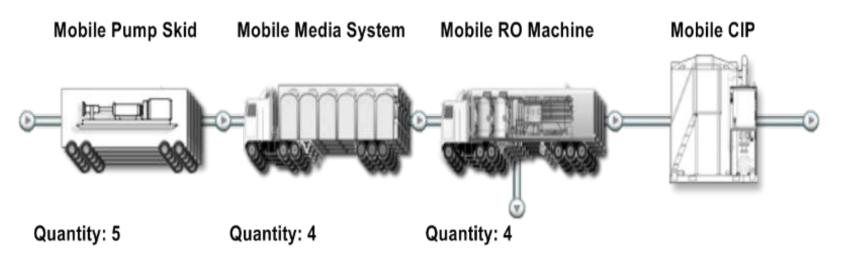
Conventional RO Pretreatment Process

© 2010, General Electric Company

WinFlows

WinFlows

	Total			Flow, m3/hr		Pressure, bar		Perm TDS
Stage	Housing	Element	Element Type	Feed	Perm	Feed	DP	mg/l
1	6	42	SW-RO-400-HR	56.78	22.70	51.79	0.98	209.81
Total	6	42						
-								
Analytical data								
		mg/l					mg/l	
Cation	Product	Feed	Conc		Anion	Product	Feed	Conc
Са	0.62	413.08	679.05		SO4	2.40	2735.64	4498.15
Mg	1.54	1314.15	2160.59		CI	122.89	19686.71	32302.31
Na	75.67	10955.10	17970.62		F	0.00	0.00	0.00
К	4.07	400.88	656.77		NO3	0.00	0.00	0.00
NH4	0.00	0.00	0.00		Br	0.65	67.83	111.14
Ba	0.00	0.00	0.00		PO4	0.00	0.00	0.00
Sr	0.00	0.00	0.00		В	0.00	0.00	0.00
Fe	0.00	0.00	0.00		SiO2	0.04	5.06	8.30
Mn	0.00	0.00	0.00		H2S	0.00	0.00	0.00
TDS mg/l	209.81	35726.29	58628.77		HCO3	1.94	147.60	241.23
pH	5.50	7.00	7.09		CO2	9.18	9.18	9.23
]					CO3	0.00	0.25	0.61



WinFlows

Flow Data	m3/h	r	Analytical Data	mg/
Raw Feed:	56.78	3	Raw Feed TDS	35289.2
Product:	22.70)	Product TDS	209.8
Concentrate:	34.10)	Concentrate TDS	58628.7
System Data			Single Pass Design	
Temperature: C	R0-1	: 25.00		
			Pass 1	
Feed Flow to 1st 9	Stage Housing	m3/hr	56.78	
Feed Pressure		bar	51.79	
Array Recovery		%	40.00	
Permeate Flow		m3/hr	22.70	
Split Permeate Fl	ow	m3/hr	0.00	
Pump Summary				
Main Pump			Pass 1	
Fee	d Flow	m3/hr	22.70	
Inle	t Pressure	bar	2.50	
Dis	charge Pressure	bar	51.79	
Tot	al Efficiency	%	65.27	
Pov	ver	kW	47.62	
ERD Booster Pum	IP			
Fee	d Flow	m3/hr	34.08	
Pre	ssure Increase	bar	1.53	
Effi	ciency	%	54.38	
Pov	ver	kW	2.66	
Total Power Co	nsumption	kW	50.28	

Mobile Fleet (Sea Water System)

Example: System to produce 180 m3/h of permeate

Each train can produce up to 45 m3 / h of permeate. Emergency assistance and BOO contracts. Estimated cost per m3:

- 12 months Contract: R\$ 4,00
- 10-years BOO contract: R\$ 2,80

imagination at work

22 GE Water & Process Technologies